Control and Management in a Mobile Agent Workflow Architecture

	Sterling S. Foster

Dept. of Defense
	
	Dana Moore

AT&T Laboratories

	ssfoste@afterlife.ncsc.mil
	
	Dana.Moore@att.net

	
	
	

	Michael J. Flester

RABA Technologies
	
	Bohdan A. Nebesh

Dept. of Defense

	Mike.Flester@raba.com
	
	banebes@afterlife.ncsc.mil

Abstract

Workflow systems based on mobile software agents improve overall flexibility and adaptability. Such systems do however, present some special challenges with respect to control and performance assurance. This paper describes a decentralized agent control and management strategy that prevents system flooding and maintains good overall system throughput. Control of the system is divided among the following three controlling entities: the Work Service Broker (WSB), Agent, and Agent Pool. The WSB maintains information about what services are available on the network. The Agent maintains its itinerary, current state, and travel log; this information is used in conjunction with the information from the WSB to direct routing of the Agent. The Agent Pool maintains information about the number of agents in the system, and the overall system load. This control strategy was successfully used in a workflow application called Autopilot, which is a heterogeneous text processing workflow system where the elements are of unknown complexity and size, and where the potential processing paths through the routing domain are initially unknown.

Introduction

Workflows, composite activities potentially spread across multiple systems connected via networks are good potential candidate applications for the use of mobile software agents. Workflow applications are often problematic because they are often rigidly structured and inflexible and often have difficulties coping with dynamic requirements. However, the ability to make decisions locally plus increased autonomy are well-suited to address these problems and other problems.

Even as they offer potential solutions however, agent-based architectures present unique problems of their own. This paper presents solutions to the problems of estimating, controlling, and planning an optimally performing distributed software agent system while maintaining the capability of adaptively modifying the routing of data through a workflow.

We present a control strategy for creation and management of autonomous mobile agents and enumerate solutions for certain problems of system optimization in our design of Autopilot[3], a mobile agent implementation of a distributed text processing application.

Autopilot: an Agent based Workflow Application

In order to create and study the practical implementation issues in a dynamic system with a large number of processing paths, a wide variety of payload sizes and complexity, we chose to apply an agent-based architecture to the problem of processing and disseminating incoming documents to appropriate users based on their interests. This is one of the problems being addressed by the Defense Advanced Research Projects Agency (DARPA) and the intelligence community TIPSTER Text Program [12]. TIPSTER is an effort to advance the state of the art in text processing technologies, specifically in the areas of: 1). Information Retrieval; 2). Message Understanding; and 3). Summarization. The resulting research system, Autopilot allowed us to study a number of questions in a highly distributed Java-language environment. Figure 1 depicts the use of mobile agents as the locus of control and processing in Autopilot.

[image: image1.wmf]LanguageID

 1

Spanish Filter

document

agent

Agent Launcher

LanguageID

 2

English Filter

Spanish MT

Agent pool

User 1

User 2

Œ

�

Ž

�

‘

As a new document arrives at the system boundary, the Agent Launcher finds an available agent from the agent pool.
The agent consults a WSB which suggests the best (lowest cost) service available, in this case, the cheapest identifier place, and then a second since the first place could not identify the document.

The document is identified as a Spanish language document. The agent improves the document's state from ‘UNKNOWN’ to ‘Spanish.’
The agent again consults a WSB to gain knowledge about how to further improve a Spanish document It looks for Service Providers which have advertised an ability to process documents whose form is 'Spanish' and finds that the Spanish Machine Translation Service can translate a Spanish document to English. The agent travels to the Spanish Translation Provider with the document and meta-data

The agent consults a WSB and is directed to the nearest English Filter Place, which tells the agent to give the document to users 1 and 2.

 The agent will continue in this fashion until a state is reached in which no additional improvement can be done. Ultimately, the current state of the document will be set via one of the Service Providers, so that, when the agent consults a WSB for a final time, a Drop-off place is its destination. When the agent arrives at a drop-off point, it deposits documents of interest in the user’s preferred directory. The document has been formatted for presentation in a browser. The document is also keyword indexed and archived. The agent is recycled at the end of its mission, by traveling back to the Agent Launcher Place. The Agent Launcher Place voids the references to the agent’s data, and returns it to the Agent Pool.

Agent Control and Management

Control as implemented in the AutoPilot system is divided between the Agent, Place, and Workflow Service Broker (WSB). An Agent in AutoPilot can migrate from one address space to another while carrying its’ payload, data and meta-data. A Place represents a network service that an Agent visits to satisfy processing needs. An Agent consults the WSB to determine which Place offers the best service at the lowest cost in terms of performance.

Workflow Service Broker (WSB)

The WSB is used to guide an Agent in determining the next service to visit. The control logic in an Agent determines what the Agent needs at a given instance, conversely the WSB maintains information about what, if anything is currently available to satisfy the Agent’s needs. Thus an Agent requiring a specific service consults the WSB to find any Place that fulfills its needs.

The WSB recommends the next place in the agents processing path. The recommendation is based on data type handled, "service quality" and "service cost". Each place registers itself with the WSB after it begins executing. Information regarding data types handled, an initial estimate of service quality, and an initial estimate of service cost are provided during registration. Over time, each place measures the actual cost and quality of the service it is providing and periodically updates the WSB.

Our implementation supports a multi-tiered hierarchy of WSBs. One "master" WSB must exist at a well-known location, but the implementation encourages the establishment of local WSBs that hold information about places available in a local domain. Local WSBs are used to ensure that agents use local resources when available. Our multi-tiered directory scheme is implemented in the following way:

· Any host is capable of hosting a local WSB if configured to do so.

· Places, at start of execution, register with their local WSB.

· The WSB in each tier of AutoPilot reports the addition of new entries or the removal of existing entries to its parent. Ultimately the chain of reporting terminates in the well-known "master" WSB. The master contains, reasonably current, information of global scope. Local WSBs only know what is available in their domain.

· If a request for a given service cannot be satisfied by a local WSB, the request is forwarded to its parent. Unresolved requests are forwarded until they are either resolved by some WSB in the hierarchy, or until the master WSB declares that no such service is available.

The WSB is also responsible for enforcing some simple load balancing. Whenever a WSB finds that multiple places of equal cost and quality meet an agent’s needs, it uses a simple round-robin algorithm to decide which place the Agent should visit. This implementation supports a simple round-robin scheduling scheme. The round robin scheduling is only in effect whenever an agent is going to travel off machine. Favoring places on the local host over remote places minimizes agent travel. Minimizing unnecessary Agent travel improves overall system performance.

Information in the WSB is stored as a four-tuple representing service type, service name, data type processed, and location. This four-tuple is used for querying the WSB for a set of services. If a service acts on multiple types, then the WSB will have multiple “proxy” entries for it. The structure of the WSB is such that duplicate information is not maintained, but instead is referenced. For example Table 1 shows the information that might be stored in a WSB that has information about several machine translation systems.

	Machine Translation
	Globalink
	French
	Machine1

	Machine Translation
	Globalink
	German
	Machine2

	Machine Translation
	Systran
	German
	Machine3

	Machine Translation
	Systran
	French
	Machine3

	Machine Translation
	Systran
	Spanish
	Machine3

Table 1

WSB queries are formatted like DNS names with wildcards, for example, one can query the WSB for a service that provides machine translation on a Spanish document with the following query (Translate.*.spanish.*). The format is serviceType.serviceName.dataType.location. The above mentioned query would return all services at all locations which provide Spanish machine translation.

All entries in the WSB are created when a Place registers with the WSB. These entries remain active for a given maximum time period unless a Place tells the WSB that it is still alive, and still wants an entry to be maintained for it. Any entry that is not “renewed” is deleted by the WSB when a set time period expires. This simple leasing mechanism allows the WSB to maintain a list of entries that represent Places that are truly available. If a machine that is running a service goes down, or becomes unavailable due to a network outage, then the WSB will eventually remove its entry.

Agent Routing Algorithm

In AutoPilot, the initial version of system control was based entirely on the current form of the data. Representing the “current form” as a simple String variable made the interface between the Agent and the WSB simple. It also did not add to the complexity of the Agent payload.

As the agent carried its payload through a sequence of various processing places, the system acted like a finite state machine with the current-form representing transitions between states. When the current-form was set to "DONE" the agent’s state was set to a final state and the Agent was either destroyed or the payload scrubbed and the agent recycled for further use. The processing and agent movement in this simple scheme (some error handling omitted for clarity) is depicted in the following exhibit:

while(true) {
 if (theData == null || // no data

 thePlace == null || // no place

 theData.currentForm() == null || // no form value

 theData.currentForm().startsWith("DONE") || // done processing

 (newKey = wsb.getNextKey()) == null) { // no more dests

 homePlace.agentPoolReturn();

 return;

 }

 appendTravelogue(newKey);

 moveTo(newKey);

 }

Figure 1 – control logic
While this scheme initially worked well, it was very restrictive in that the system had no mechanism for representing the data as having more than one current form at a given time. Some of the processing nodes discovered multiple attributes about the Agent’s payload. For example, the language identification Place could identify several languages in a single document. Other processing nodes needed to orchestrate multiple steps. For example, a Filtering Place could specify that the data should be delivered to several users.

In order to make the system respond to a wider range of possible scenarios, the current form was re-implemented as a Stack of itinerary items, instead of as a simple String. This allowed the Agent to maintain a list of deferred work in the itinerary stack. With the itinerary stack, processing nodes have the ability to add (push) multiple items onto the stack or to process (pop) multiple items off the stack. The agent itinerary could be created with either a one node look-ahead scheme as it was in the initial implementation, or it can be completely or partially pre- planned.

To correctly process an itinerary stack while retaining the dynamic workflow nature of the system, the following four processing stages were used:

1. The Identification Stage comprises all of the processing designed to handle UNKNOWN data types, learn various attributes needed for subsequent processing, and construct as much of the agent's itinerary as can be determined. The robustness and richness of the features of the processing nodes in this stage will determine the systems ability to react to new types of input without programmatic changes.

2. The Processing Stage comprises all of the processing to transform the data from one type to another, data augmentation through interaction with local or centralized data stores, or data segmentation by applying heuristics based on data attributes and spawning agents to handle newly segmented data chunks.

3. The Delivery Stage comprises all of the processing that notes user interest in particular pieces, types, or formats of data. The data is delivered to the specified destinations whether through interaction with a file store, database, or user interface.

4. The Termination Stage includes all of the processing needed to clean up the agent's payload and prepare the agent for recycling. As part of an agent pool associated with a particular input source, the agent may need to travel back to its original host and re-associate itself with the pool from where it was drawn.

The new control logic used by the Agent is as follows:

while(true) {

 if (theData == null || // no data

 thePlace == null || // no place

 theData.currentFormSize() < 1 || // no forms

 theData.currentStage().equals(TERMINATE) || // done processing

 (newKey = getGoodKey()) == null) { // no more destinations

 homePlace.agentPoolReturn();

 return;

 }

 appendTravelogue(newKey);

 moveTo(newKey);

 }

Figure 2 – modified control logic
Additional complexity was needed to generate the next good key in order to allow Places the ability to add items to the itinerary stack without regard to processing stage order. Rather than a simple query to the WSB that was used in the initial version of the control logic, the getGoodKey method was added with the goal of preventing premature transitions between the stages.

For example, some processing nodes in the Identification Stage can add Delivery Stage items onto the stack without intending to eliminate either further Identification Stage processing or more Processing Stage activities. Because reshuffling the itinerary stack to correctly order stage dependencies every time an item was added or removed was time consuming, the stack is evaluated for the destination of the next key only if that key indicates a transition from one stage to a subsequent stage. The entire stack is then evaluated to determine if any of the itinerary items would cause more processing in the current stage. If such an item is found, that item jumps to the top of the stack and this "deferred processing" is then handled.

The ability to add and remove multiple itinerary items together with control logic to prevent premature stage transition allows the system to use the same Agent-Place-WSB mechanisms to accomplish much more complicated tasks. The additional complexity of the Agent payload due to the itinerary did not noticeably decrease overall system performance.

Avoiding Processing Congestion

In traditional workflow management systems workflow scenarios are pre-planned, a central control process handles the scheduling of distributed tasks to maintain overall system performance. The AutoPilot workflow application uses autonomous mobile agents to handle the complex coordination and communication between a set of distributed Places. The main problem introduced by the autonomous and adaptive nature of mobile agents is the potential for processing congestion. At any given time, the overall system could potentially have a large number of agents independently working on their assigned tasks. The tasks can vary in complexity and processing requirements resulting in an overall distributed system with non-deterministic behavior and congestion problems. Maintaining overall system throughput requires tracking and control mechanisms to manage the aggregation of autonomous agents. This section describes an agent pooling strategy we have deployed in AutoPilot workflow application to manage the consumption of distributed computing resources.

In AutoPilot, a pool of agents is created at system startup time and maintained throughout the processing. The agents in the pool represent the available ‘workers’ that can be delegated tasks (documents to process) and released into the processing environment. The purpose of the pooling strategy is to prevent the overall system from becoming saturated with agents requesting processing resources. In addition to managing the influx of agents into a processing environment, the pooling strategy also has the benefit of improving performance. This is due to the fact that agent creation and instantiation are expensive operations in terms of system resources. Therefore it is more efficient to generate a ready cache of agents at system startup time and to store them in an idle state until needed. The process that manages the agent pool has the following responsibilities:

1. Controlling the influx of agents into the distributed processing environment. This control is maintained by limiting the number of agents in the system to the maximum agent pool size.

2. Handling tasking requests and assigning new tasks to available agents in the pool. Tasks are ordered by priority to ensure that higher priority tasks are delegated first.

3. Monitoring agents that have been assigned processing tasks and released into the processing environment. An important aspect of the monitoring responsibility includes requesting overdue agents to return to the pool.

4. Creating new agents to replenish the pool when the monitoring process determines that an agent has failed or died.

5. Re-initializing agents that have completed prior tasking and are returning to the pool. This process involves clearing the data and tasking portions of the agent in preparation for re-use.

When a new task is received, the agentPoolGet method is invoked to request an agent. If available, an agent is checked-out from the pool. However, if the pool has been depleted the request remains pending until the next agent to complete processing has been returned to the available pool. Once an agent has been retrieved from the pool, the following steps are required before dispatching the agent:

1. A unique identification number (UID) is created and assigned to the agent. UIDs are used by the pooling process to track agents that have been released into the processing environment.

2. The agent is assigned the new tasking. Appended onto the itinerary for each assigned task, are the instructions for the agent to return to the pool after it has completed processing.

3. The agent dispatch time is recorded and stored by the pooling process. The dispatch time along with information about task duration are used to estimate when the agent can reasonably be expected to complete processing.

Once a dispatched agent has completed processing the last step in the agents itinerary is to return to the process managing the pool. Upon returning to the pooling process the agent invokes the agentPoolReturn method which re-initializes the agent for future use.

One of the open research issues with the agent pooling strategy is how to determine the optimum agent pool size. Ideally as the types of tasks and computing resources change over time the agent pool should be adjusted accordingly to maintain overall system throughput. In the current AutoPilot implementation the agent pool size is fixed at system startup time and remains constant throughout the processing. The pool size is determined by running a series of tests with varying agent pool sizes on a representative collection of processing resources. The tests are designed around a worst-case tasking scenario to estimate the maximum number of agents that can be handled in the system under demanding processing conditions. However, if the computing environment hosting the multi-agent application changes significantly the agent pool size must be re-calculated to maintain optimum throughput.
Conclusions
Controlling and tuning mobile agent implementations of workflow applications is challenging. To address the issues of agent control and system performance in mobile-agent systems we have described three control mechanisms: the WSB, Agent and Agent Pool. This control strategy has been successfully used in the Autopilot workflow application, and is being used in the development of several other distributed workflow applications.

A number of valuable lessons were learned in the continued exploration of this control strategy, amongst them, the use of :

· Place co-location (especially for lightweight services) which resulted in minimized Agent travel, which in turn increased system performance.

· Agent pooling; this minimized the formation of bottlenecks at slow processing places by limiting the maximum number of Agents in the system at any given time.

· Local WSB's to minimize off-machine travel to perform queries .

· A“Flattened” Agent payload to reduce cost of serialization.

· The Itinerary stack which increased flexibility and adaptability of the Agent without impacting system performance.

Although some issues are open research items, the architecture as presented ameliorates indeterminacy to a large degree and aids in assuring overall system stability and performance.

References

[1] Clack, C., Farringdon, J., Lidwell, P., Yu, T. "An Adaptive Document Classification Agent," (Research Note, RN/96/45,) Dept. of Computer Science, University College London, 1996.

[2] Clack, C., Farringdon, J., Lidwell, P., Yu, T. "Autonomous Document Classification for Business," Proceedings of the First International Conference on Autonomous Agents, 1997, pp. 201-207.

[3] Foster, S., Moore, D, Nebesh, D., AutoPilot: Experiences Implementing a Distributed Data-Driven Agent Architecture. Proceedings of TOOLS-26 '98, August 3-7, 1998. IEEE Press. Piscataway, NJ

[4] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[5] General Magic's Odyssey http://www.genmagic.com/html/agent_overview.html

[6] Java RMI API http://www.javasoft.com/products/jdk/1.1/docs/api/Package-java.rmi.html

[7] ObjectSpace Voyager Core Technology http://www.objectspace.com/voyager/
[8] Object Management Group, “CORBA Services: Common Object Services Specification,” November 1997.
[9] Otte, R., Patrick, P., Roy, M., Understanding CORBA, Prentice-Hall, 1996.

[10] Rus, D., Gray, R., Kotz, D., "Transportable Information Agents," Proceedings of the First International Conference on Autonomous Agents, 1997, pp. 228-236.

[11] The ODP Trader: Overview of Concepts, Models, and Services, http://amazon.postec.ac.kr/opd/summaries.html

[12] TIPSTER Program home page: http://www.tipster.org/

[13] White, Jim., "Telescript Technology: The Foundation for the Electronic Marketplace," General Magic White Paper, General Magic, Inc. , 1994.

[14] White, Jim. "Telescript Technology: Mobile Agents," http://www.genmagic.com/html/presentation.html, 1996.

�

Figure 1- Data-driven Agent Workflow

